G. Alcan, M. Unel
International Conference on Unmanned Aircraft Systems (ICUAS 2017), Miami, Florida, USA, June 13-16, 2017
Publication date: July, 2017


This paper presents a novel acceleration feedback control method for robust hovering of a quadrotor subject to aerodynamic disturbances. An acceleration based disturbance observer (ABDOB) is designed to reject disturbances acting on the positional dynamics of the quadrotor. In order to provide high stiffness against disturbances acting on the attitude dynamics, a nested position, velocity and inner acceleration feedback control structure that utilizes PID and PI type controllers is developed. To obtain reliable angular acceleration information, a cascaded estimation technique based on an extended Kalman filter (EKF) and a classical Kalman filter (KF) is proposed. EKF estimates the Euler angles and gyro biases by fusing the data from gyroscope, accelerometer and magnetometer. Compensated gyro data are then fed into a Kalman filter whose process model is derived from Taylor series expansion of angular velocities and accelerations where angular jerks are considered as stochastic inputs. The well-known kinematic relation between Euler angular rates and angular velocities is employed to estimate reliable Euler accelerations. Estimated Euler angles, rates and accelerations are then used as feedback signals in the nested attitude control structure. Performance of the proposed method is assessed by a high fidelity simulation model where uncertainties in the sensor measurements, e.g. sensor bias and noise, are also considered. Developed controllers that utilize estimated acceleration feedback provide extremely robust hovering results when the quadrotor is subject to wind gusts generated by Dryden wind model. Simulation results show that utilization of acceleration feedback in hovering control significantly reduces the deviations in the x-y position of the quadrotor.


  title={Robust hovering control of a quadrotor using acceleration feedback},
  author={Alcan, Gokhan and Unel, Mustafa},
  booktitle={2017 International Conference on Unmanned Aircraft Systems (ICUAS)},